Prabin Kumar Rath

+1 602-884-4471 • prath4@asu.edu • Portfolio • LinkedIn • Github

EDUCATION

M.S. Robotics and Artificial Intelligence Arizona State University, Tempe, AZ

Graduating May 2024

4.00 GPA

B.S. Computer Science

May 2020

National Institute of Technology, Rourkela, India

8.91 GPA

TECHNICAL SKILLS

Programming Languages: Python, MATLAB, C/C++, C#, TypeScript, Java, Shell

Simulators: Gazebo, Coppeliasim, PyBullet, Nvidia IsaacSim Cloud Technologies: Azure, AWS, Kubernetes, Docker

Tools and Frameworks: PyTorch, TensorFlow, ROS/ROS2, OpenCV, Open3D, Angular, SQL, Spring, Git, Linux

WORK EXPERIENCE

Electric Vehicles and Transportation (EVSTS Lab), ASU:

Research Assistant

Sept 2022 - Present

- Integrated PV-RCNN 3D object detection model with Hesai and Ouster LiDARs, achieved an impressive 83.6% mAP.
- Employed Kalman filters for accurate object tracking that exhibited **87.4% MOTA**. Calculated Safety Envelope and Time to Collision metrics between vehicles and pedestrians, enabling in-depth analysis of accident scenarios, Paper-Link
- Developed a Graph Neural Network (GNN) model for object boundary prediction and a Pointnet model for 7-DOF bounding box regression on 3D LiDAR data, achieving ~10 fps on Hesai Pandar128.

Language Grounding and Planning (Logos Lab), ASU:

AI Researcher

May 2023 - Present

- Created RL environment for tabletop manipulation with Franka Panda robot in Coppeliasim. Developed multi-robot RL environments in Nvidia IsaacSim. Enabled real-time simulation of **1000**+ robots with RGBD-segmented observations.
- Conceptualized a receding horizon Transformer-Diffusion policy for generative neural motion planning, enabling random DOF robotic manipulation in tabletop, kitchen shelf, and cubby drawer environments.

Wells Fargo - EGS, Hyderabad, India:

Software Engineer (Data Scientist) Aug 2020 - July 2022

- Architected and deployed robust, multi-threaded Rest API modules in Python to efficiently interface with Azure Cognitive Services. Optimized average response time by **75%**, while delivering **4x** throughput.
- Engineered OCR pipelines for table layout detection and extraction of customer data from scanned bonds and contracts, resulting in a remarkable **400-hour/week** reduction of manual labor.
- Designed configurable and robust C# Regular Expression modules for numerical data extraction from 2.4 M handwritten forms and documents; utilized XUnit to ensure consistent backward compatibility over multiple release waves.

ACADEMIC PROJECTS

Masked Trainable Embeddings for Efficient Robot Learning | RLBench, Imitation Learning, Python Coursework Project, Worked in a team of three, Project-Link

Fall 2023

- Incorporated maskable trainable embeddings into SOTA Transformer-based Behavior Cloning algorithms for task and skill generalization. Improved the few-shot learning performance of the baseline models by an average of 32%.
- Utilized Wandb for visualization of learning metrics while training the model on ASU's supercomputing clusters.

Stacking Cubes with Turtlebot Robotic Arm | Gazebo, RL, Planning, Python

Spring 2023

- Portfolio Project, Worked in a team of three, Project-Link
 - Devised a highly effective control and planning ROS MoveIt (IKFast, RRT*) package for stacking cubes and rigorously validated it through Gazebo simulations. Demonstrated 95% success rate in simulations and 78% on real hardware.
 - Trained a torque-controlled visual servoing Soft Actor-Critic (SAC) policy in Gazebo with 3D RGBD observations that resulted in a **73%** success rate at grabbing cubes placed at random locations.

Preference Learning from Automatic Ranked Demonstrations | MuJoCo, IRL, Python Coursework Project, Worked in a team of four, Project-Link

Spring 2023

- Improved the D-REX Inverse Reinforcement Learning (IRL) algorithm to learn reward functions from sub-optimal demonstrations using preference modeling. Implemented the algorithm with OOP principles on top of the imitation library.
- Trained a PPO reinforcement learning policy using Stablebaselines3 that outperformed the demonstrator by 233%.

Spatiotemporal Learning for Traffic Flow Prediction | PvTorch, CNN, Pvthon Coursework Project, Worked in a team of four, Project-Link

Fall 2022

- Experimented with 4 different CNN backbone architectures (ResNet, VGG, EfficientNet, InceptionNet) for improving the spatiotemporal learning performance in traffic flow prediction applications (Python, PyTorch, Tensorboard).
- Improved upon the STResNet baseline achieving an average grid RMSE 17.9 on TaxiBJ and BikeNYC datasets.

Monte-Carlo Tree Search Pacman Agent | MCTS, Python

Fall 2022

Coursework Project, Worked in a team of four, Project-Link

- Developed an AI agent for the Pacman game using the MCTS algorithm in Python. Merged reflex behavior and greedy A* search to achieve a win rate of 80% on standard layouts.
- Benchmarked the algorithm against 3 conventional game-theory agents using statistical ANOVA Tukey HSD tests.

EXTRACURRICULAR ACTIVITIES

Mentoring undergraduate students for projects in the course "Connected and Automated Vehicles", ASU

Fall 2023

Organized Line Following robotics competition at NIT Rourkela, managed 30 teams from colleges across India. Fall 2018