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TRAINING DISTRIBUTION ZERO-SHOT SIM-TO-REAL TRANSFER

Fig. 1: XMoP learns configuration-space planning for a distribution of synthetic embodiments (left) and zero-shot transfers the planning
behavior to unseen simulated (center) and real-world manipulators (right).

Abstract—Classical manipulator motion planners work across
different robot embodiments [1]. However they plan on a pre-
specified static environment representation, and are not scal-
able to unseen dynamic environments. Neural Motion Planners
(NMPs) [2] are an appealing alternative to conventional plan-
ners as they incorporate different environmental constraints to
learn motion policies directly from raw sensor observations.
Contemporary state-of-the-art NMPs can successfully plan across
different environments [3]. However none of the existing NMPs
generalize across robot embodiments. In this paper we propose
Cross-Embodiment Motion Policy (XMoP), a neural policy for
learning to plan over a distribution of manipulators. XMoP
implicitly learns to satisfy kinematic constraints for a distribution
of robots and zero-shot transfers the planning behavior to unseen
robotic manipulators within this distribution. We achieve this
generalization by formulating a whole-body control policy that
is trained on planning demonstrations from over three million
procedurally sampled robotic manipulators in different simulated
environments. Despite being completely trained on synthetic
embodiments and environments, our policy exhibits strong sim-
to-real generalization across manipulators with different kine-
matic variations and degrees of freedom with a single set of
frozen policy parameters. We evaluate XMoP on 7 commercial
manipulators and show successful cross-embodiment motion
planning, achieving an average 70% success rate on baseline
benchmarks. Furthermore, we demonstrate our policy sim-to-
real on two unseen manipulators solving novel planning problems
across three real-world domains even with dynamic obstacles.

I. INTRODUCTION

Motion planning for robotic manipulators is the task of
finding a sequence of robot configurations connecting a start
joint state to the goal joint state while respecting joint limits
of the robot and avoiding obstacles. Even after decades of
research in this domain, real-time motion planning in complex
unseen environments is still a challenging problem [4–6].

Classical motion planners either use random sampling to
explore the configuration-space (C-space) [7–10] or employ
gradient-based optimization methods [11–14] to search for a

Videos and code are available at https://prabinrath.github.io/xmop.

valid plan. While these algorithms generalize across embodi-
ments, they often demand a non real-time computation budget
for generating desired motion behaviors in geometrically com-
plex environments [5, 10]. Furthermore, classical algorithms
assume the availability of a pre-computed geometric repre-
sentation of the robot’s workspace for state validation, which
hinders their scalability in unseen and dynamic environments.
To overcome these limitations, neural planners learn to gen-
erate trajectories directly from visual observations [2, 3, 15–
18]. However, these policies are individually trained on data
from a single manipulator, trading-off the cross-embodiment
flexibility offered by classical planners that are agnostic to the
robot’s morphology.

We identify two fundamental constraints for learning cross-
embodiment motion planning. First, different manipulators
have varying kinematic properties such as link lengths, as
well as diverse morphologies characterized by their degrees
of freedom. Each manipulator operates within a particular
configuration-subspace bounded by its joint limits. Thus,
training a single neural policy to generate actions spanning
multiple bounded subspaces renders cross-embodiment C-
space policies a challenging task to learn. Second, data for
training cross-embodiment policies is difficult to gather as
there are only a limited number of embodiments available
commercially, which do not fully capture the distribution of
possible kinematic variations.

To address the above challenges, we present Cross-
Embodiment Motion Policy (XMoP), a family of data-driven
methods to learn neural policies for cross-embodiment motion
planning. Our contributions are outlined as follows:
• Our novel control policy utilizes the robot’s physical de-

scription (i.e., URDF [19]) and generates C-space plans for
a distribution of 6- and 7-DoF manipulators. We demonstrate
zero-shot generalization of our policy to 7 unseen commer-
cial manipulators, using a set of frozen policy parameters.

• We propose a 3D semantic segmentation-based model
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for perceptual cross-embodiment collision detection that
achieves a 98% recall and zero-shot transfers to different
real-world unseen planning environments.

• Finally, we combine our control policy with the collision
model under a model-predictive framework, achieving an
average 70% success rate for motion planning using purely
visual inputs with manipulators and environments which
were never seen during training.

To the best of our knowledge, XMoP is the first configuration
space neural planning policy that zero-shot transfers to un-
seen robotic manipulators. We demonstrate sim-to-real transfer
along with success rate evaluations on Franka FR3 and Sawyer
robots solving novel planning problems in unseen real-world
environments.

II. RELATED WORK

Learning to Plan: Previous studies have proposed learning
deep priors for informed configuration-space sampling in
RRTs [2, 16, 20]. Another line of work have investigated latent
space representations and optimization for motion planning
[15, 17]. Motion planning has also been formulated as sam-
pling from a distribution of valid trajectories using diffusion
models [18, 21, 22]. Recently, behavior cloning has shown
success in learning planning policies from synthetic demon-
strations [3, 22]. In contrast, Reinforcement Learning (RL) has
also been used for training unsupervised motion planning poli-
cies [23, 24]. Many of these learning based approaches have
been evaluated in toy environments and simulations where the
environment was fully observable [20–24], making it unclear
how they can be extended for real-world manipulator motion
planning. Few methods have been deployed on real robots and
show environment generalization [2, 3, 15–18]; however they
require a separate policy to be trained for each embodiment.
None of the previous works demonstrate motion planning
across embodiments, thus lacking the versatility offered by
their classical counterparts. In contrast, our method shows
zero-shot generalization over a distribution of manipulators
enabling cross-embodiment neural motion planning.

Cross Embodiment Learning: Prior works have shown
embodiment generalization with RL using robot-environment
mix-match strategies [25], vector representation of the hard-
ware [26], and latent representation for robots [27]. These
methods only work on seen manipulators having fixed DoF
whereas our method generalizes across manipulators with
different DoF. Recent supervised learning methods showcase
policy transfer across robots in task-space using robot specific
controllers [28–32]. As these policies do not generalize in
robot configuration-space, they are not suitable for motion
planning formulation. There has been a surge of interest in
meta policies that are trained on procedurally sampled robot
morphologies with kinematics and dynamics randomization
[33, 34]. These policies have shown zero-shot generalization
to unseen embodiments in simulation, but have never been
deployed on robots in the real world. [35] show zero-shot
generalization to real robots; however they use a fixed DoF
template and do not account for morphology variations. None

of the prior methods have demonstrated generalization to
commercial robots with morphology and kinematic variations
whereas our method shows zero-shot sim-to-real generaliza-
tion across different robotic manipulators in the real world.

III. METHODOLOGY

A. Whole-Body Control Formulation

Prior methods for neural motion planning directly predict
configuration-space actions that do not generalize across em-
bodiments [2, 3, 15–18]. We formulate XMoP as a Markovian
motion dynamics model f(pt+1:t+H |pt, gt) that provides the
future states of manipulator over a horizon of H steps.
The instantaneous state observation for the manipulator is
represented as a sequence of rigid-body SE(3) link poses with
respect to the robot’s base i.e., pt ∈ RD×4×4, where D is
the number of rigid-body links on the manipulator. The goal
gt ∈ R4×4 represents the end-effector SE(3) target for motion
planning. Our control policy π(at|pt, gt) as shown in Fig. 2,
learns to predict link-wise relative SE(3) transformations at =
Tt+1:t+H for reconstructing the whole-body manipulator pose
in future time steps. The formulation for the transformation
target Tt+k ∈ RD×4×4 for k ∈ {1, ...,H} is shown in eq. 1.

Tt+kpt = pt+k =⇒ Tt+k = pt+k(pt)
−1 (1)

where link poses pt are obtained using the manipulator’s
forward kinematics function ϕ(jt), with jt ∈ RDoF as the
instantaneous configuration-space observation. The C-space
action in future time step jt+k is retrieved from the predicted
whole-body pose p̂t+k = T̂t+kpt by solving for whole-body
IK using the following constrained optimization procedure:

min
jt+k

∥p̂t+k − ϕ(jt+k)∥, s.t. jL < jt+k < jU (2)

where jL and jU are the lower and upper joint limits of the
manipulator. The above optimization objective is non-convex,
and hence a close initial guess is required for convergence. We
address this issue by collecting dense planning demonstrations
with a maximum per-joint deviation of 0.05 rad. Thus, making
the instantaneous observation jt to be an initial guess that
lies within the close neighbourhood of jt+k. In practice, we
also employ multiple retries with random initial joint states to
handle redundancy and singularities in manipulators.

B. Pose Transformation Policy

We formulate the whole-body control policy πθ(at|pt, gt) as
a stochastic Transformer diffusion policy [37] parameterized
by θ that predicts a batch of possible future trajectories for
model predictive control. While training, the noise prediction
model ϵθ takes the noisy sample aτt , which is obtained by
applying the forward diffusion process to a0t = Tt+1:t+H ,
where τ is the diffusion step. We use the noisy sample aτt as
link transform query, which is passed to the diffusion model,
as shown in Fig. 2. Additionally, we also pass c = (pt, gt)
for observation and goal conditioning. For step conditioning,
we follow the adaptive layer normalization strategy proposed
in Diffusion Transformers [38]. We train the noise prediction
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Fig. 2: XMoP perceives the embodiment state as a sequence of whole-body SE(3) link poses pt and predicts link-wise pose
transformations Tt+1:t+H over a horizon H to move the end-effector towards the goal pose gt. We use a Transformer [36] base
policy architecture, that operates on an input pose sequence (pt, gt) and uses self-attention to convert the query tokens into a
sequence of link-wise relative pose transformations. Contextual information is provided to the Transformer using three types
of position embeddings: (1) LPE is a fixed set of sinusoidal position embeddings that are repeated over the horizon providing
kinematic chain awareness for every horizon step; (2) HPE and (3) CPE, are learned position embeddings providing awareness
for horizon and input, respectively. Additionally, we use novel attention masking strategies within the Transformer for cross-
embodiment adaptation. The predicted link-wise transformations are applied to the instantaneous link poses to reconstruct the
future whole-body pose of the manipulator. This target pose is achieved using a whole-body IK procedure, which retrieves the
configuration-space joint state within the bounds specified in the manipulator’s URDF.

model using mean square error loss as shown in eq. 3 which
minimizes the variational lower bound of the KL-divergence
between the original data distribution and the DDPM [39]
distribution.

Lxmop = ∥ϵθ(aτt , c, τ)− ϵ∥22, ϵ ∈ N (0, I) (3)

We convert the input pose matrices in pt to compact 9D
representations r = (o⃗, x⃗, y⃗), where o⃗ ∈ R3 is the 3D
translation component and (x⃗, y⃗) ∈ R6 is the 6D rotation
component in SE(3) [40]. The model predicts the relative pose
transformations in the same 9D representation space which is
converted back to homogeneous matrices using Gram–Schmidt
orthogonal decomposition [40]. Our policy utilizes the Trans-
former [36] model as the underlying backbone which expects
input in a sequential format. On that aspect, we emphasize on
four key design decisions in our policy:
1) SE(3) Proprioception: The embodiment state is provided

to and queried from the policy as a sequence of SE(3)
pose-tokens, allowing the policy to learn motion synergies
between rigid-body links.

2) Kinematic Masking: We introduce an inductive bias for
kinematics by restricting attention to parent or ancestor
links at the current horizon step, and to the same link at
both the current and previous horizon steps.

3) Morphology Adaptation: To enable learning across dif-
ferent morphologies, we mask out the pose-tokens for
unavailable links. For example, we use D pose-tokens per
horizon step, with D = 8 for both 6- and 7-DoF robots
(including the base link pose-token that is perpetually set

to identity). For a 6-DoF robot however, we mask out one
pose-token and pass 0⃗ to account for the missing link.

4) Link-Horizon Position Embedding: Contextual informa-
tion is provided to the Transformer using position embed-
dings for query and input pose-tokens. Fig. 2 shows the
position embedding scheme used in XMoP.

Prior works have used link-wise tokens [33], temporal state
inputs [21, 34], action diffusion [18, 21, 37], and SE(3) pose
observations [41, 42] for learning and planning applications.
We combine these ideas with our whole-body pose transfor-
mation method to learn neural policy for cross-embodiment
motion planning.

C. Collision-Free Motion Synthesis
We formulate collision detection as a semantic segmentation

problem for identifying the links of the robot that are in
collision given a pointcloud observation of the workspace.
Our semantic collision detection model XCoD : R4 → R2

takes segmented pointcloud of the workspace as input where
each point consists of 3D spatial coordinates, and a semantic
label. These points are uniformly sampled from the surface
of individual links (URDF mesh files) of the manipulator and
scene obstacles for the future time steps as predicted by our
control policy πθ. We assign unique semantic labels to each
link of the robot, while using a separate reserved label for all
obstacles. For training the collision model, we utilize point-
wise binary label y, where collision-free link points are as-
signed a training label of 0, whereas link points in collision are
assigned a training label of 1. Fig. 3 shows planning scenes and
corresponding colorized pointclouds highlighting point-wise
training labels. We utilize a Point Transformer V3 (PTv3) [43]
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Fig. 3: Point-wise training labels for XCoD. Collision, Not
Collision, Obstacles.

model for the semantic segmentation task and train it using
cross-entropy loss along with an additional surrogate Lovász
hinge loss, that has shown to improve semantic segmentation
performance in prior work [44].

We use XCoD to assign scores for a batch of trajectories
predicted by XMoP and choose the future trajectory with the
fewest collisions for locally reactive planning. Eq. 4 shows the
formulation of the proposed Model Predictive Control (MPC)
method where N is the number of surface points sampled
from the manipulator, B is the MPC batch size, and ŷ is the
per-point collision logit from XCoD.

a∗t = a
(q)
t , q = argmin[s1, s2, . . . , sB ],

s =
1

HN

H∑
h=1

N∑
i=1

argmax ŷi
(4)

Similar to Diffusion Policy [37], we set the prediction horizon
Hp = 16, while the execution horizon Ha is determined on
the fly based on the collision scores from XCoD during MPC
rollouts. We empirically found that Ha between 2 to 4 with
MPC batch size of B = 16 works best for both simulation
and real-world experiments.

D. Data Generation and Training

Kinematic Templates: Synthetic manipulators are repre-
sented with open kinematic chains connecting a series of
rigid-body links. We design these links using 3 axis-aligned
cylinders forming a rigid-body template. Each link template
is parameterized with the following information: (1) length of
the cylinders, (2) radius of the cylinders, and (3) constraints
for the joint that connects the link to the preceding link.
We follow the design pattern of two commercially available
robots: (1) 6-DoF UR [45] (2) 7-DoF Sawyer [46]. Fig. 1 (left)
shows composed manipulators sampled from our synthetic
embodiment distribution by randomizing the parameters for
constituent link templates. We adopt the 3.27 million synthetic
planning problems from the MπNets dataset [3] and generate
demonstration data by sampling a unique embodiment for each
problem and solving it using the AIT∗ [10] motion planner.

Data Augmentation: During training, we randomize the
position and orientation of the link frames for pose compu-
tation by uniformly choosing cylinders from the constituent
link templates. Fig. 4 shows two possible frame sequences
for a sampled robot. With the frame augmentation technique,
number of possible sequences for a single manipulator is
3D which promotes cross-embodiment generalization during
training. Additionally, we adopt the data augmentation strate-
gies from MπNets [3] and add Gaussian noise to joint and
pointcloud observations during training while also sampling
unique pointclouds during each training iteration to promote
sim-to-real visual robustness.
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Fig. 4: Two possible sets of frame sequences for a sampled 7-DoF
manipulator. Link frame considered for pose-token.

IV. EXPERIMENTS AND RESULTS

It should be noted that none of the robots used in our bench-
mark or real-world experiments were part of XMoP’s training
dataset. All of our results (simulation and real-world) are zero-
shot evaluations using a single set of frozen XMoP (38.7M)
and XCoD (2.5M) checkpoints, which were completely trained
on synthetic planning demonstration data.

A. Simulation Benchmark Evaluations

We evaluate XMoP on 7 different robotic manipulators
from 5 commercial manufacturers: Franka Panda, Rethink
Sawyer, Kuka IIWA, Kinova Gen3 6-DoF, Kinova Gen3 7-
DoF, Universal Robots UR5, and Universal Robots UR10. For
each manipulator we use a set of 500 novel problems from
the MπNets [3] test distribution, ensuring that valid collision-
free IK solutions exist for both start and goal end-effector
targets. Policy rollouts are terminated if the manipulator’s end-
effector reaches the goal or a maximum of 200 rollout steps
are exhausted. We consider a goal to be reached when the L2
norm of the 9D pose (III-B) difference between end-effector
and goal is less than a pre-specified threshold of 0.01.

Baseline Planners: We compare our policy against the
upper performance threshold of AIT∗ [10] planner that has
access to an oracle collision checker from PyBullet. We also
evaluate generalization capabilities of our learned collision
model XCoD by combining it with the AIT∗ baseline. This
hybrid planner utilizes the XCoD model for collision queries.

We utilize the following quantitative metrics to evaluate the
planning performance: (1) Success Rate (SR) - A trajectory
is successful if the final end-effector position is within 1 cm



Embodiment
XMoP+XCoD AIT∗+XCoD AIT∗+PyBullet

SR[%] ↑ PL ↓ ST[s] ↓ SR[%] ↑ PL ↓ ST[s] ↓ SR[%] ↑ PL ↓ ST[s] ↓

Panda 71.8 4.6 ± 4.7 49.8 ± 65.8 86.0 3.6 ± 2.3 39.7 ± 27.3 94.4 2.9 ± 1.5 4.0 ± 0.3

Sawyer 70.8 4.8 ± 5.3 42.9 ± 53.6 90.4 3.3 ± 2.8 34.6 ± 27.1 92.4 1.9 ± 0.9 3.9 ± 0.5

IIWA 71.0 5.1 ± 5.6 38.3 ± 52.5 87.6 2.8 ± 2.1 32.3 ± 21.2 93.4 2.1 ± 1.0 3.9 ± 0.4

Gen3 6-DoF 67.6 4.7 ± 6.0 51.8 ± 70.9 71.0 2.5 ± 2.6 24.2 ± 11.0 92.4 2.0 ± 0.9 3.9 ± 0.5

Gen3 7-DoF 78.2 5.5 ± 5.9 44.0 ± 53.0 88.4 3.3 ± 2.6 35.0 ± 22.6 94.2 2.2 ± 1.2 3.9 ± 0.4

UR5 70.8 3.1 ± 3.3 42.2 ± 71.2 80.8 2.6 ± 1.9 31.0 ± 20.7 88.8 2.1 ± 1.5 3.9 ± 0.4

UR10 67.4 3.1 ± 3.4 31.5 ± 52.0 72.6 2.9 ± 2.6 33.2 ± 24.8 92.2 2.1 ± 1.2 3.8 ± 0.6

TABLE I: Benchmark results. There are no neural planning baselines that work across multiple embodiments (see IV-D). Hence, we compare
to the upper baselines of AIT∗+PyBullet which we expect to perform better as it has access to the ground truth obstacle geometry information.
In contrast, XMoP plans directly from visual inputs. See IV-C for discussion on the hybrid baseline. All inference are on RTX A5000 GPU.

Robot
Planning Success Rate (%)

Unstructured Obstacles Wall Hopping Bin-to-Bin

Franka FR3 70.0 80.0 70.0

Rethink Sawyer 80.0 80.0 50.0

TABLE II: Sim-to-real results on three real-world domains. The
average duration of these experiments including planning and rollout
was 43.77± 22.20 seconds. All inference are on RTX 3090 GPU.

and orientation is within 5◦ of the goal, with no collisions
or joint limit violations. (2) Path Length (PL): Sum of L2
norm between consecutive configuration-space way points. (3)
Solution Time (ST): Total time elapsed to generate a successful
trajectory. Table I shows the benchmark results.

B. Real-world Evaluations

Prior works on neural planning do not have any evaluation
domains for real-world, hence we created three novel domains
for quantitative evaluations and statistics.
• Unstructured Obstacles Domain: A domain with random

obstacles covered with a green screen to demonstrate plan-
ing abilities in unstructured and cluttered environments.

• Wall Hopping Domain: A domain with structured shapes
acting as obstacles that occupy a significant amount of space
in front of the robot.

• Bin-to-Bin Domain: A task-oriented domain where the
robot plans its movement from one bin to another, similar
to tasks it might perform in a warehouse environment.

Fig. 5 shows the three real-world domains. We used mono-
color obstacles and segmented them from a calibrated depth
camera to extract the obstacle point cloud. As discussed in
III-C, a segmented pointcloud of the robot was augmented into
the scene for generating the input for XCoD. We manually
assigned end-effector goal poses evenly distributed around
the obstacles for each of our experiments. A rollout was
considered successful if the manipulator reached the goal
without touching any obstacles or itself. All domains had
obstacles with dimensions equal to or larger than the links
of the manipulator. We conducted 10 experiments for each
domain with two different robots Franka FR3 and Rethink

Sawyer. XMoP achieved an overall success rate of 71.6%.
The success rate of our experiments is shown in Table II.

C. Result Analysis and Discussion

Plan Optimality: Table I shows that the AIT∗ upper base-
line generates approximately 50% more optimal plans and is
10 times faster compared to the XMoP planner. However, this
comes with the assumption of privileged obstacle information
being available for collision detection, thus making it difficult
to deploy in unseen real-world environments. We believe our
work is a preliminary step in the direction of learning neural
planners independent of the embodiment, thus bringing their
capabilities one step closer to classical motion planners.

Collision Detection: As shown in Table I, the hybrid
AIT∗+XCoD planner achieves an average success rate of
82.4%, which is within 10% of the oracle baseline, demon-
strating the effectiveness of our learned collision detection
model. However, this hybrid planner fails in the real world,
as binary collision queries using XCoD are inaccurate with
noisy point clouds. In contrast, XMoP’s MPC design allows
for more robust real-world deployment. XCoD is a generalized
collision model that enables collision-free rollouts for MPC-
based policies, such as XMoP. Although XCoD is trained
on fully observable synthetic pointclouds, we found that the
backbone PTv3 [43] model is effective in handling partial
pointclouds captured from real-world depth cameras.

Computational Efficiency: The current SOTA neural plan-
ner MπNets [3] needs two weeks of training for a single
manipulator and requires a compute heavy data generation
effort. In contrast, XMoP needs one-time data generation and
takes two days to train on a single RTX A5000 GPU.

Zero-shot Generalization: Table I demonstrates XMoP’s
ability to plan for manipulators with novel designs that were
unseen during training. XMoP exploits the fact that motion
behavior is characterized by the whole-body pose of the
embodiment [47, 48]. For similar whole-body poses, differ-
ent manipulators might have contrasting joint configurations,
but the link poses are relatively closer in SE(3). Similarly,
configuration-space actions for different manipulators are de-
pendent on their morphology, but link pose transformations
are similar for individual manipulator links.



Fig. 5: XMoP successfully plans for two unseen robotic manipulators in three real-world domains. Unstructured Obstacles (left), Wall
Hopping (center), and Bin-to-Bin (right). Videos of policy rollouts are available at https://prabinrath.github.io/xmop.

Sim-to-real Experiments: We found the Bin-to-Bin domain
particularly challenging, as the policy needed to accurately
plan the approach angle to avoid collisions with the bin
walls (see Table II). However, this experiment demonstrates
a practical use case where XMoP can be applied for zero-shot
task execution in unseen real-world environments.

Kinematic Constraints Satisfaction: Our policy predicts
link-wise transformations that obey kinematics constraints
across different manipulators. Our hypothesis is that it learns a
correlation between pose-token sequence and the distribution
of kinematically feasible whole-body transformations. We are
actively investigating this property of XMoP and will provide
a more detailed analysis in our future work.

Limitations: XMoP’s performance is limited by the quality
of synthetic training data, leading to struggles with highly
out-of-distribution (OOD) planning setups. Moreover, XCoD
collision checking is slow, accounting for approximately 90%
of the solution time (see Table I), which could be improved
by using better semantic segmentation models in the future.

D. Failed Baselines and Ablations
MπNets Baseline: Table III shows the benchmark results

for the MπNets model trained on demonstration data from
the Franka Panda robot. We also trained a similar model on
XMoP training data, which overfitted to the geometric design
of synthetic robots and could not transfer zero-shot to any of
the unseen robotic manipulators (resulting in 0% SR). On the
contrary, XMoP achieves an average SR of 71.1% across 7
unseen robots as shown in Table I.

Baseline
Planning Success Rate (%)

Panda Sawyer IIWA Gen3 6-DoF Gen3 7-DoF UR5 UR10

MπNets 89.6 0 0 0 0 0 0

TABLE III: The SOTA neural planner MπNets pre-trained on single
embodiment data fails to generalize across unseen robots.

ACT Baseline: We evaluated the SOTA C-space behavior
cloning policy ACT [49] for cross-embodiment planning. This
policy was provided with privileged embodiment information
including link lengths, link radius, and joint limits. However,
it failed to control (0% SR) both unseen synthetic and com-
mercial robots. In contrast to prior works discussed in II,
XMoP control policies are not trained on any embodiment-
specific information, thus showing that such information is
not absolutely necessary for cross-embodiment generalization.

Ablation Studies: We ablated the XMoP policy to under-
stand the importance of each of our design decisions.
• w/o SE(3) Proprioception: This is the most critical com-

ponent for cross-embodiment generalization without which
the SR drops to 0%.

• w/o Kinematic Masking and Morphology Adaptation:
We completely removed the masking scheme, thus allowing
every pose-token to attend every other pose-token. Com-
pared to XMoP, the average SR dropped by 4.4%.

• w/o Link Horizon Position Embedding: We replaced the
proposed position embedding scheme with learned position
embeddings from the Transformer paper [36]. The average
SR compared to XMoP dropped by 1.2%.

• w/o Frame Augmentation: We did not use the frame aug-
mentation technique from III-D and instead used the pose
of the first cylinder in each link template. Without frame
augmentation, XMoP’s average SR dropped by 68.1%.

• Scale of Data: We trained XMoP with reduced dataset sizes
i.e., 1M and 2M demonstrations which resulted in 51.8%
and 23.2% drop in average SR respectively.

In summary, we observed that the masking scheme and po-
sition embedding scheme do not significantly contribute to
the success of XMoP. However, SE(3) proprioception, frame
augmentation, and higher scale of data are critical for cross-
embodiment generalization.

V. CONCLUSION

In this paper, we presented XMoP, a novel configuration-
space neural motion policy that solves novel planning prob-
lems zero-shot for unseen robotic manipulators which has
not been achieved by any prior robot learning algorithm.
We formulated C-space control as a link-wise SE(3) pose
transformation method, showcasing its scalability for data-
driven policy learning. We used fully synthetic data to train
models for motion planning and collision detection while
demonstrating strong sim-to-real generalization with a 70%
success rate. Our work demonstrates for the first time that C-
space motion policies can be learned without embodiment bias
and that these learned behaviors can be transferred to novel
unseen embodiments in a zero-shot manner. We hope our work
will enable more generalized robot foundation models that are
capable of generating whole-body motion for a diversity of
robots. Our work is a preliminary step towards such desirable
generalization in learning robot behaviors.

https://prabinrath.github.io/xmop
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APPENDIX

A. Embodiment Sampling with Kinematic Templates

Link Template: We design 3-Cylinder and 2-Cylinder
templates to represent rigid-body links for our synthetic ma-
nipulators. These cylinders sequentially extrude along the 3D
axis as shown in Fig. 6(a). Each link is parameterized with
six numbers leading to a vector representation for link i as
Li = (p, lx, ly, lz, r, cf) where i ∈ {1, 2, . . . , D} and D is the
number of rigid-body links on the manipulator. The definition
of the parameters are as follows:
• p: A sequence of three characters representing connection

pattern of cylinders within the link. It has 33 possible per-
mutations i.e., {xyz,yxz,zxy,yzy, . . .}. Each pattern
maps to a number that is referenced in Li. For example,
the pattern zxy means the first cylinder extrudes along z
axis, the second cylinder extrudes along x axis, and the
third cylinder extrudes along y axis.

• lx, ly , lz: Length of the cylinders along x, y, and z axis
respectively.

• r: Radius of all the three cylinders in the link template.
• cf : Represents chiral flip [50] with a binary value of 0 or
1. When the value is 1, a mirror link is created instead
of a regular link. Only the last cylinder in the connection
pattern is flipped for chirality. A visual representation of a
chiral link pair is shown in Fig. 6(a) and Fig. 6(b).

For a 2-Cylinder template as shown in Fig. 6(d), we set the
length of the middle link to 0.

End-Effector Template: The end-effector template is
represented with a vector of three numbers E =
(h, r, s,−1,−1,−1) where padding −1 is used to make the
length consistent with the link templates. The end-effector is
represented using a 3-Cuboid mesh on top of a base cylinder
as shown in Fig. 6(e). The definition of the parameters are h:
height of the base cylinder, r: radius of the base cylinder, and
s: scaling factor for the 3-Cuboid mesh.

Joint Constraints: A pair of link templates Li−1 and Li can
be chained together only if the third character in the pattern of
link i−1 matches with the first character in the pattern of link i.
Such a chain is connected with a revolute joint parameterized
using a vector of two numbers Ji = (ll, ul). The definition
of the parameters are ll: lower joint limit, and ul: upper joint
limit.

Kinematic Template: We hypothesize that these basic
templates can be used to compose arbitrary manipulators that
are kinematically valid and lie within the distribution of com-
mercial manipulators. A synthetic manipulator is represented
using matrix KT of shape (8×D) as shown in eq. 5.

KT =

L1 L2 · · · LD−1 E

J1 J2 · · · JD−1 JD

 (5)

We fix the patterns p and chiral flips cf to match with
that of the commercial robots Sawyer, and UR. Rest of the
parameters in the kinematic template are sampled using one
of the following strategies:

• normal: Parameters are sampled from a normal distribu-
tion centered at the estimated parameters from Sawyer, and
UR robots. The variance is hard specified for individual
parameters to ensure that the generated robots are valid.

• uniform: Parameters are sampled from a uniform distri-
bution with hard conditions to ensure that the generated
robots are valid.

Fig. 7 shows sampled manipulators from the distribution of
Sawyer, and UR robots. We use ROS [51] xacro to process
kinematic templates and generate URDF [19] files on the fly
for data generation.

B. Synthetic Data Generation
Planning Problems: We adopt planning problems from

the MπNets [3] dataset, which contains 3.27 million motion
plans for the Franka Panda [52] robot across three different
indoor environments. We use the terminal joint states of these
motion plans to extract start and goal end-effector poses of
the Panda robot using forward kinematics function ϕ. Then,
we attempt collision-free IK to find valid start and goal joint
configurations, thereby defining novel planning problems with
our synthetic manipulators. Similar to [53], we formulate IK
as a quadratic optimization problem as shown in eq. 6.

min
j

f(j) s.t. jL ≤ j ≤ jU (6)

where j is the configuration-space candidate for optimization,
and jL and jU are lower and upper joint limits of the
manipulator. We define the cost function f(j) as sum of the
following objectives:
• Position Cost: Position x, xg ∈ R3 are current and goal po-

sitions of the end-effector with respect to the manipulator’s
base frame.
x = ϕ(j).ee.pos

cpos(x, xg) = − exp

(
−∥x− xg∥2

0.08

)
+ 25 ∗ (∥x− xg∥)4

(7)
• Orientation Cost: Quaternion q, qg ∈ R4 are current and

goal orientations of the end-effector with respect to the
manipulator’s base frame. Where dist(q, qg) is the absolute
quaternion distance [54] accounting for the sign ambiguity.

q = ϕ(j).ee.rot

crot(q, qg) = − exp

(
−dist(q, qg)

2

0.08

)
+ 25 ∗ (dist(q, qg))4

(8)
• Collision Cost: We use PyBullet to obtain collision dis-

tances from the links of the manipulator within an AABB
[55] collision radius of 0.1 m for self-collision and 0.3 m
for environment collision. These distances are then passed
into an exponential function, g(x), for computing the net
collision cost.

g(x) =

{
1.8(−x+0.01) if (x− 0.01) < 0,

0 otherwise,

ccoll(j) =
∑

x∈AABB(j)

g(x)
(9)



(a) (b) (c) (d) (e)

Fig. 6: Example of random templates that are composed to sample synthetic embodiments for data generation. (a) 3-Cylinder zxy template
with no chiral flip, (b) 3-Cylinder zxy template with chiral flip, (c) 3-Cylinder yzy template with chiral flip, (d) 2-Cylinder zxy template
with no chiral flip, (e) End-effector template.

ORIGINAL EMBODIMENT NORMAL SAMPLES UNIFORM SAMPLES

Fig. 7: Sampled robots from our training distribution. XMoP is trained on planning demonstrations data from such synthetic embodiments
and zero-shot transfers to unseen manipulators in both simulation and real-world.

For eq. 7 and 8, we use the groove objective from [53]
with default parameters from the paper; whereas for eq. 9
we empirically found that the exponential objective provides
faster optimization convergence. We use the SLSQP imple-
mentation from scipy [56] and attempt IK five times with
random resets if the optimizer gets stuck in a local minima.
Each optimization attempt is capped to a maximum of 500
iterations.

Planning Data Generation: We employ the SOTA
sampling-based planner AIT∗ [10] from OMPL [57] along
with PyBullet’s oracle collision checker to generate a valid
solution trajectory. For demonstration optimality, we enforce
a minimum search time of 15 seconds with a maximum
20 seconds timeout while optimizing over the path length
objective. Additionally we set a maximum allowed path length

(IV-A) threshold of 10 to avoid generating highly non-optimal
trajectories. To aid the non-convex optimization as discussed
in III-A, we re-time the solution path using more granular
collision checks along a B-spline interpolation of the generated
trajectory allowing a maximum per joint velocity of 0.05
rad/s. We resample a new embodiment until we solve a given
environment, thus ensuring valid motion plans for all the 3.27
million problems in MπNets dataset. The final motion plan
along with the kinematic template KT are saved to the disk
for training purposes. Our data generation process for XMoP
was executed on a cluster of 150 cloud compute cores all
solving planning problems parallely for two weeks.

Collision Data Generation: For every planning problem
in our synthetic dataset, we randomly sample an intermediate
joint configuration from the saved motion plan for collision



Algorithm 1 WholeBodyIK

1: Input: Manipulator URDF, Whole-body predicted pose
p̂t+k, Configuration-space proprioception jt, Forward
kinematics function ϕ, Max attempts M , Cost threshold
κ

2: for attempts 1, 2, . . . ,M do
3: obj ← ∥p̂t+k − ϕ(URDF, jt+k)∥ ▷ Set objective
4: bounds← URDF ▷ Get joint limits
5: jt+k, cost← SLSQP.minimize(obj, bounds, jt)
6: if cost < κ then
7: return jt+k

8: end if
9: jt ← jt + 0.1 ∗ N (0, I) ▷ Perturb and retry

10: end for

data generation. This intermediate configuration is guaranteed
to be collision-free as it is part of a valid motion plan. To
introduce collision into the scene, we add scaled Gaussian
noise as shown in eq. 10 where j ∈ RDoF is the collision-
free joint configuration. The uniform scaling factor η ensures
that the collision model is trained on various noise levels
and remains reactive to subtle collisions of the end-effector
typically encountered while moving close to environment
obstacles. To prevent class specific bias, we ensure equal
number of collision and collision-free joint configurations for
training XCoD.

jnoisy = j + η ∗ N (0, I), η = Uniform(0, 1) (10)

C. Whole-Body IK for Configuration-Space Retrieval

The exact procedure for whole-body IK is shown in Algo-
rithm 1. We attempt to retrieve the configuration-space candi-
date jt+k using a quadratic program, starting with the initial
guess jt, which is the instantaneous joint state proprioception
from the manipulator. We add Gaussian noise to jt and re-
attempt IK for ten times if the optimization gets stuck in a
local minima. In practice, we find that 100 SLSQP iterations
are enough for convergence with most manipulators.

D. Implementation Details

Model Architecture: A detailed architecture diagram of
XMoP is shown in Fig. 8. As discussed in III-A and III-B,
we use D = 8 (number of rigid-body links) and H = 16
(prediction horizon) as XMoP parameters. This makes the
input sequence length as D× (H+1)+1 = 137 pose-tokens.

Masking Strategy: As discussed in III-B, we restrict self-
attention in XMoP using kinematic and morphology masking.
Fig. 9 shows the horizon wise breakup of the square attention
mask used in XMoP. The 1st and 8th pose-tokens at every
horizon step is used for base link and end-effector respectively.
However, the 6-DoF robots do not have a value for the 7th

pose-token; therefore, we mask out this key at all horizon steps
encouraging morphology adaptation.

XMoP XCoD

Optimizer AdamW AdamW

Weight Decay 0.05 0.05

Learning Rate 1e-4 5e-4

LR Schedule Linear to 1e-5 over 1 epoch Cosine Annealing to 5e-5

Batch Size 64 12

Dataset Size 3.27× 106 1× 106

Epochs 20 1

Training Time 1 day 22 hours 5 hours

TABLE IV: Training hyperparameters for XMoP planner.

Loss Masking: While training XMoP, we backpropagate
the loss only for unmasked morphology pose-tokens; i.e, the
loss for 7th pose-token at every horizon step is ignored for
6-DoF robots. For XCoD, the loss is backpropagated only for
the augmented points that were sampled from the surface of
the robot.

Diffusion Model: For the diffusion model, we use the
DDIM [58] approach with 100 training iterations and 10
inference iterations. We use the Square Cosine Schedule [59]
for diffusion noise parameterization which has been shown
effective for policy training in prior work [37]. Furthermore,
we follow the conventional practice of using an Exponential
Moving Average (EMA) [60] during training and update the
model weights with a decay factor of 0.9999 [37, 38].

Training and Inference: The training and inference algo-
rithms for XMoP control policy is shown in Algorithm 2
and Algorithm 3 respectively. Table IV shows the training
hyperparameters.

Classical Planner Baselines: We set a planning time-
out of 20 seconds for AIT∗+PyBullet, and 100 seconds for
AIT∗+XCoD, with a preferred minimum search time of 4
seconds and 20 seconds respectively. For fair comparison, we
evaluate the smooth trajectory obtained after path shortcutting
and interpolation, as these are necessary for practical deploy-
ment of classical planners.

E. XCoD Benchmark Experiments

Table V shows benchmark evaluations for the learnt col-
lision model XCoD. We evaluate these metrics by sampling
equal number of collision and collision-free states. For colli-
sion detection we use a binary condition i.e., a configuration is
considered to be in collision if the ratio of detected link points
in collision to the total number of manipulator points is greater
than 0.001. This condition is also used for AIT∗+XCoD
baseline experiments as shown in Table I.

The XMoP control policy predicts whole-body poses for
future time steps, which are evaluated by XCoD during MPC
rollouts. In some out-of-distribution (OOD) scenarios, XMoP’s
predictions may lack accuracy, leading to spatial distortions in
the reconstructed future poses that violate the manipulator’s
kinematic constraints. To examine XCoD’s behavior in such
cases, we pushed the collision model to its limits by analyzing



DETECTION

XMoP

DiT Encoder

Linear 9 -> 512

8x Self-attention blocks, 8 Heads

Predicted Whole-Body 
Pose Transformations

DiT FinalLayer 512 -> 9, 512 -> 1024

Link-Horizon
PosEmb

DDIM 
Schedule

Linear 9 -> 512

38.7M Parameters

PTv3

XCoD 2.5M Parameters

Planning Scene Segmented Scene Pointcloud Point-wise Collision Prediction

COLLISION

Fig. 8: Architecture diagram of different components in XMoP. Our planning policy uses self-attention to convert query pose-tokens into
link-wise relative pose transformations ât conditioned on whole-body poses pt and goal end-effector pose gt. The collision model XCoD
takes a link-wise segmented pointcloud of the planning scene and predicts point-wise collision labels for the manipulator.

highly OOD problems. Collisions occur when the robot makes
contact with an environmental obstacle or with itself. Fig. 11
presents results from our OOD evaluations, where the links of
a Kuka IIWA robot are randomly scattered in 3D space. Our
model successfully identifies both self-collisions and collisions
with the environment, demonstrating strong generalization for
collision detection in highly OOD scenarios.

F. Real-World Experiments

We developed a ROS [51] RViz-based interface to visualize
the environment pointcloud and specify goal end-effector
positions for XMoP. For open-loop rollouts, we take a single
pointcloud of the obstacles at the beginning and internally
rollout the MPC policy to generate the motion plan that is
executed on the real robot. Whereas, for closed-loop rollouts,
we deploy XMoP policy in real-time. Fig. 12 shows interme-
diate snapshots of two commercial robots using XMoP to plan
across the three real-world domains as discussed in IV-B.

G. Architecture Ablations

Policy Architecture: We evaluated our whole-body pose
transformation method using a comparatively simpler Trans-
former [36] policy, as depicted in Fig. 10. In contrast to
the original stochastic diffusion policy used in XMoP, this
policy was designed as a deterministic variant for predicting
whole-body poses over a single horizon step. We refer to this
policy as XMoP-S. Due to its deterministic nature, XMoP-S
cannot be used with the MPC framework and therefore cannot
plan in environments with obstacles. Hence, we assessed its
performance on more relaxed 6-DoF reaching problems by
removing obstacles from our benchmark. The XMoP-S policy
achieved a 70.9% success rate on these reaching benchmark
problems, showcasing that our whole-body control method is
applicable to different base control models other than diffusion
policies. XMoP-S was trained within 6 hours an a single
A5000 GPU and the policy exhibited real-time performance
while operating at an average rollout frequency of 10 hz.



Algorithm 2 Training XMoP control policy

1: Input: Planning demonstration dataset D, Neural policy πθ, Horizon length H , Configuration-space observation noise η,
Forward kinematics function ϕ

2: for every training step do
3: Sample KT, ξ ← D ▷ Get kinematic template and demonstration trajectory
4: URDF← GenerateURDF(KT) ▷ Generate URDF from kinematic template
5: Sample jt:t+H , jgoal ← ξ ▷ Get a trajectory chunk and goal joint configuration
6: jt ← jt + η ∗ N (0, I) ▷ Add C-space observation noise
7: pt ← ϕ(∼ URDF, jt) ▷ Get frame randomized whole-body observation pose
8: gt ← ϕ(URDF, jgoal).ee ▷ Get goal end-effector pose
9: pt+1:t+H ← ϕ(URDF, jt+1:t+H) ▷ Get target whole-body poses

10: Tt+1:t+H ← pt+1:t+H(pt)
−1 ▷ Get whole-body relative pose transformations

11: Sample τ ∼ Uniform(1, 100), ϵ ∼ N (0, I) ▷ Get diffusion step and Gaussian noise
12: aτt ← AddNoise(Tt+1:t+H , ϵ, τ) ▷ Add noise using a scheduler
13: ϵθ ← πθ ▷ Get the noise prediction model from policy
14: Predict ϵ̂← ϵθ(a

τ
t , pt, gt, τ) ▷ Predict diffusion noise

15: Lxmop ← MSE(ϵ̂, ϵ) ▷ Compute loss
16: Update θ with AdamW and Lxmop ▷ Update policy parameters with gradient descent
17: end for

Algorithm 3 Inference with XMoP control policy

1: Input: Manipulator URDF, Trained neural policy πθ, Configuration-space proprioception jt, Prediction horizon H , Goal
end-effector pose gt, Forward kinematics function ϕ, Denoising steps K

2: pt ← ϕ(URDF, jt) ▷ Get whole-body observation pose
3: Sample âKt ∼ N (0, I) ▷ Get Gaussian noise
4: ϵθ ← πθ ▷ Get the noise prediction model from policy
5: for τ = K,K − 1, . . . , 1 do
6: Predict ϵ̂← ϵθ(â

τ
t , pt, gt, τ) ▷ Predict diffusion noise

7: âτ−1
t ← Denoise(âτt , ϵ̂, τ) ▷ Remove noise using a scheduler

8: end for
9: p̂t+1:t+H ← â0tpt ▷ Get predicted whole-body poses

10: for k = 1, 2, . . . ,H do
11: jt+k ←WholeBodyIK(p̂t+k, jt,URDF) ▷ Retrieve configuration-space actions
12: end for

Embodiment Segmentation IoU (%) Collision Precision (%) Collision Recall (%) Collision Accuracy (%)

Panda 79.4 96.9 98.6 97.7

Sawyer 88.4 97.9 99.1 98.5

IIWA 85.0 99.5 99.0 99.2

Gen3 6-DoF 67.0 71.1 99.4 79.6

Gen3 7-DoF 67.3 81.7 98.5 88.2

UR5 73.0 97.1 66.8 82.4

UR10 76.1 98.2 70.7 84.7

TABLE V: Benchmark results for the learned collision model XCoD. We evaluate the semantic segmentation performance using the
Intersection Over Union (IoU) metric. Furthermore, we show the collision detection performance with precision, recall, and accuracy metrics.
Note: The recall for UR robot was affected by the imprecise collision mesh available for ground-truth validation, which led to false positive
labels during evaluations.
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Fig. 9: Self-attention masking in XMoP. Masked, Unmasked,
Query pose-tokens, Condition pose-tokens. Kinematic mask

restricts the self-attention to parent or ancestor links within a horizon
step, and to the same link in current and previous horizon steps.
Morphology adaption for 6-DoF is enabled by masking out keys of
the unused pose-token.

Segmentation Architecture For our collision model, we
also experimented with semantic segmentation using a Point-
Net++ [61] backbone. We found the segmentation performance
of PointNet++ to be worse than that of the Point Transformer
model [43]. Furthermore, due to its high memory requirements
and latency, we found PointNet++ to be practically infeasible
for MPC formulation with XMoP.

H. Failed Ideas

We tried to integrate a few standard ideas from the neural
planning literature, however they performed relatively poorly
compared to XMoP:
• C-space Goals for Planning: When provided with the

whole-body pose target as additional pose-tokens for goal

Transformer Encoder

XMoP-S

8x Self-attention blocks, 8 Heads

Predicted Whole-Body 
Pose Transformations

Linear 512 -> 9

Sinusoidal
PosEmb

25.2M Parameters

Linear 9 -> 512

Fig. 10: XMoP-S is a deterministic 6-DoF reaching policy that
zero-shot generalizes to unseen robotic manipulators.

conditioning, the policy overfits to the sub-optimal plan-
ning behaviors of sampling based planners and generates
trajectories with higher path lengths.

• Input Normalization: Normalization of neural network
inputs is a conventional approach that has been used for
improving policy performance in prior works [3, 37, 49].
However, we did not find it useful for our pose transfor-
mation method. In contrast, the input-normalized policy
takes longer time to train and fails to generalize to unseen
embodiments.

I. Limitations and Future Work

Planning Failures Our policy struggles to avoid obstacles
when the robot’s end-effector is close to the specified goal
pose. In such scenarios, the generated trajectory samples from
the diffusion policy lack the required diversity to avoid obsta-
cles and are too biased toward reaching the goal. Hence, the
predicted trajectory with fewest collisions is still a trajectory
in collision. A possible solution to this issue could be to add
sub-optimal evasive trajectories to the demonstration dataset
for near-goal collision avoidance. Moreover, due to the lack of
joint bound awareness, for complex planning problems some
manipulators get locked at joint limits, as shown in Fig. 13(a).
Further fine-tuning XMoP policy with few demonstrations
from the robot might help avoid such undesired behaviors.

Collision Failures Fig. 13(b) shows an instance of false
positive detection from XCoD model when in reality the high-
lighted robot link is collision-free. We found such instances
to be rare and attribute them to the model overfitting to biases
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Fig. 11: Pointcloud captured from a planning scene where the links of Kuka IIWA robot are randomly scattered in 3D space. XCoD identifies
self-collisions and environment collisions showcasing highly out-of-distribution generalization for collision detection.

Fig. 12: XMoP planning rollouts across three unseen real-world domains for two unseen 7-DoF commercial manipulators Franka FR3 and
Sawyer (better viewed when zoomed in). Videos of policy rollouts are available at https://prabinrath.github.io/xmop.

in the training data. Moreover, the solution time of our MPC
policy is highly dependent on the inference speed of the colli-
sion model. Our current implementation allows 1.25 seconds
for each MPC evaluation, which checks B = 16 different
possible future trajectories of the manipulator as predicted
by the control policy. We hope future improvements in 3D
semantic segmentation methods will enhance the efficiency
of XCoD collision detection, thereby improving the inference
speed of our MPC policy.

Out-of-Distribution Planning Problems XMoP policy
struggles to plan for OOD goal poses and environment setups,
a common issue with behavior cloning methods. Training
XMoP on a more diverse planning dataset, where the goals are
evenly distributed within the reachable workspace, might help
in learning better policies for OOD planning generalization.

https://prabinrath.github.io/xmop


Joint Lock

False Positive

(a) (b)
Fig. 13: Limitations of XMoP planner. (a) As our policy is not conditioned on joint bounds, it runs into joint limits for complex planning
tasks. The problem is illustrated for a Panda robot, where our policy does not recover from the locked configuration and fails to plan for
the goal pose specified in red. (b) False positive collision detection for a Gen3 7-DoF robot.
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